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Abstract

We investigate the detailed dynamics of multi-dimensional Hamiltonian systems by studying the evolution of volume elements formed by
unit deviation vectors about their orbits. The behavior of these volumes is strongly influenced by the regular or chaotic nature of the motion, the
number of deviation vectors, their linear (in)dependence and the spectrum of Lyapunov exponents. The different time evolution of these volumes
can be used to identify rapidly and efficiently the nature of the dynamics, leading to the introduction of quantities that clearly distinguish between
chaotic behavior and quasiperiodic motion on N -dimensional tori. More specifically we introduce the Generalized Alignment Index of order k
(GALIk ) as the volume of a generalized parallelepiped, whose edges are k initially linearly independent unit deviation vectors with respect to
the orbit studied whose magnitude is normalized to unity at every time step. We show analytically and verify numerically on particular examples
of N -degree-of-freedom Hamiltonian systems that, for chaotic orbits, GALIk tends exponentially to zero with exponents that involve the values
of several Lyapunov exponents. In the case of regular orbits, GALIk fluctuates around non-zero values for 2 ≤ k ≤ N and goes to zero for
N < k ≤ 2N following power laws that depend on the dimension of the torus and the number m of deviation vectors initially tangent to the
torus: ∝ t−2(k−N )+m if 0 ≤ m < k − N , and ∝ t−(k−N ) if m ≥ k − N . The GALIk is a generalization of the Smaller Alignment Index
(SALI) (GALI2 ∝ SALI). However, GALIk provides significantly more detailed information on the local dynamics, allows for a faster and clearer
distinction between order and chaos than SALI and works even in cases where the SALI method is inconclusive.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Determining the chaotic or regular nature of orbits in conservative dynamical systems is a fundamental issue of nonlinear science.
The difficulty with conservative systems, of course, is that regular and chaotic orbits are distributed throughout phase space in very
complicated ways, in contrast with dissipative systems, where all orbits eventually fall on regular or chaotic attractors. Over the
years, several methods distinguishing regular from chaotic motion in conservative systems have been proposed and applied, with
varying degrees of success. These methods can be divided into two major categories: Some are based on the study of the evolution
of small deviation vectors from a given orbit, while others rely on the analysis of the particular orbit itself.
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The most commonly employed method for distinguishing between order and chaos, which belongs to the category related to
the study of deviation vectors, is the evaluation of the maximal Lyapunov Characteristic Exponent (LCE) σ1; if σ1 > 0 the orbit
is chaotic. The theory of Lyapunov exponents was applied to characterize chaotic orbits by Oseledec [1], while the connection
between Lyapunov exponents and exponential divergence of nearby orbits was given in [2,3]. Benettin et al. [4] studied the problem
of the computation of all LCEs theoretically and proposed in [5] an algorithm for their numerical computation. In particular, σ1 is
computed as the limit for t → ∞ of the quantity

L1(t) =
1
t

ln
‖ Ew(t)‖
‖ Ew(0)‖

, i.e. σ1 = lim
t→∞

L1(t), (1)

where Ew(0), Ew(t) are deviation vectors with respect to a given orbit, at times t = 0 and t > 0 respectively. It has been shown that
the above limit is finite, independent of the choice of the metric for the phase space and converges to σ1 for almost all initial vectors
Ew(0) [1,4,5]. Similarly, all other LCEs, σ2, σ3 etc. are computed as the limits for t → ∞ of some appropriate quantities, L2(t),
L3(t) etc. (see [5] for more details). We note that throughout the present paper, whenever we need to compute the values of the
maximal LCE or of several LCEs we apply respectively the algorithms proposed by Benettin et al. [2,5]. Since 1980, new methods
have been introduced for the effective computation of LCEs (e.g. [6]; see also [7] and references therein). The true power of these
techniques is revealed in the study of multi-dimensional systems, when only a small number of LCEs are of interest. In such cases,
these methods are significantly more efficient than the method of [5], which computes the whole spectrum of LCEs. On the other
hand, they are less or equally efficient when compared with the method of [2] for the computation of the maximal LCE, whose
value is sufficient for the determination of the regular or chaotic nature of an orbit.

Among other chaoticity detectors, belonging to the same category with the evaluation of the maximal LCE, are the fast Lyapunov
indicator (FLI) and its variants [8–12], the mean exponential growth of nearby orbits (MEGNO) [13,14], the smaller alignment index
(SALI) [15–17], the relative Lyapunov indicator (RLI) [18], as well as methods based on the study of power spectra of deviation
vectors [19], as well as spectra of quantities related to these vectors [20–22]. In the category of methods based on the analysis
of a time series constructed by the coordinates of the orbit under study, one may list the frequency map analysis of Laskar [23–
28], the method of the low frequency power (LFP) [29,30], the ‘0–1’ test [31], as well as some other more recently introduced
techniques [32,33].

In the present paper, we generalize and improve considerably the SALI method mentioned above by introducing the Generalized
ALignment Index (GALI). This index retains the advantages of the SALI – i.e. its simplicity and efficiency in distinguishing
between regular and chaotic motion – but, in addition, is faster than the SALI, displays power law decays that depend on torus
dimensionality and can also be applied successfully to cases where the SALI is inconclusive, like in the case of chaotic orbits
whose two largest Lyapunov exponents are equal or almost equal.

For the computation of the GALI we use information from the evolution of more than two deviation vectors with respect to the
reference orbit, while SALI’s computation requires the evolution of only two such vectors. In particular, GALIk is proportional
to ‘volume’ elements formed by k initially linearly independent unit deviation vectors whose magnitude is normalized to unity at
every time step. If the orbit is chaotic, GALIk goes to zero exponentially fast by the law

GALIk(t) ∝ e−[(σ1−σ2)+(σ1−σ3)+···+(σ1−σk )]t . (2)

If, on the other hand, the orbit lies in an N -dimensional torus, GALIk displays the following behaviors: Either

GALIk(t) ≈ constant for 2 ≤ k ≤ N , (3)

or, if N < k ≤ 2N , it decays with different power laws, depending on the number m of deviation vectors which initially lie in the
tangent space of the torus, i.e.,

GALIk(t) ∝


1

t2(k−N )−m if N < k ≤ 2N and 0 ≤ m < k − N
1

tk−N if N < k ≤ 2N and m ≥ k − N .

(4)

So, the GALI allows us to study more efficiently the geometrical properties of the dynamics in the neighborhood of an orbit,
especially in higher dimensions, where it allows for a much faster determination of its chaotic nature, overcoming the limitations
of the SALI method. In the case of regular motion, GALIk is either a constant, or decays by power laws that depend on the
dimensionality of the subspace in which the orbit lies, which can prove useful e.g., if our orbits are in a ‘sticky’ region, or if our
system happens to possess fewer or more than N independent integrals of the motion (i.e. is partially integrable or super-integrable
respectively).

This paper is organized as follows. In Section 2, we recall the definition of the SALI describing also its behavior for regular and
chaotic orbits of Hamiltonian flows and symplectic maps. In Section 3, we introduce the GALIk for k deviation vectors, explaining
in detail its numerical computation, while in Section 4 we study theoretically the behavior of the new index for chaotic and regular
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orbits. Section 5 presents applications of the GALIk approach to various Hamiltonian systems of different numbers of degrees of
freedom, concentrating on its particular advantages. Finally, in Section 6, we summarize the results and present our conclusions,
while the appendices are devoted respectively to the definition of the wedge product and the explanation of the explicit connection
between GALI2 and SALI.

2. The SALI

The SALI method was introduced in [15] and has been applied successfully to detect regular and chaotic motion in Hamiltonian
flows as well as symplectic maps [34,16,35,36,17,37–44]. It is an index that tends exponentially to zero in the case of chaotic orbits,
while it fluctuates around non-zero values for regular trajectories of Hamiltonian systems and 2N -dimensional symplectic maps
with N > 1. In the case of two-dimensional (2D) maps, the SALI tends to zero both for regular and chaotic orbits but with very
different time rates, which allows us again to distinguish between the two cases [15]: In particular the SALI tends to zero following
an exponential law for chaotic orbits and decays to zero following a power law for regular orbits.

The basic idea behind the success of the SALI method (which essentially distinguishes it from the computation of LCEs) is
the introduction of one additional deviation vector with respect to a reference orbit. Indeed, by considering the relation between
two deviation vectors (instead of one deviation vector and the reference orbit), one is able to circumvent the difficulty of the slow
convergence of Lyapunov exponents to non-zero (or zero) values as t → ∞.

In order to compute the SALI, therefore, one follows simultaneously the time evolution of a reference orbit along with two
deviation vectors with initial conditions Ew1(0), Ew2(0). Since we are only interested in the directions of these two vectors we
normalize them, at every time step, keeping their norm equal to 1, setting

ŵi (t) =
Ewi (t)

‖ Ewi (t)‖
, i = 1, 2 (5)

where ‖ · ‖ denotes the Euclidean norm and the hat (∧) over a vector denotes that it is of unit magnitude. The SALI is then defined
as

SALI(t) = min
{∥∥ŵ1(t) + ŵ2(t)

∥∥ ,
∥∥ŵ1(t) − ŵ2(t)

∥∥} , (6)

whence it is evident that SALI(t) ∈ [0,
√

2]. SALI = 0 indicates that the two deviation vectors have become aligned in the same
direction (and are equal or opposite to each other); in other words, they are linearly dependent.

Let us observe, at this point, that seeking the minimum of the two positive quantities in (6) (which are bounded above by 2) is
essentially equivalent to evaluating the product

P(t) =
∥∥ŵ1(t) + ŵ2(t)

∥∥ ·
∥∥ŵ1(t) − ŵ2(t)

∥∥ , (7)

at every value of t . Indeed, if the minimum of these two quantities is zero (as in the case of a chaotic reference orbit; see below), so
will be the value of P(t). On the other hand, if it is not zero, P(t) will be proportional to the constant about which this minimum
oscillates (as in the case of regular motion; see below). This suggests that, instead of computing the SALI(t) from (6), one might
as well evaluate the ‘exterior’ or ‘wedge’ product of the two deviation vectors ŵ1 ∧ ŵ2 for which it holds

‖ŵ1 ∧ ŵ2‖ =
‖ŵ1 − ŵ2‖ · ‖ŵ1 + ŵ2‖

2
, (8)

and which represents the ‘area’ of the parallelogram formed by the two deviation vectors. For the definition of the wedge product
see Appendix A and for a proof of (8) see Appendix B. Indeed, the ‘wedge’ product can provide much more useful information, as
it can be generalized to represent the ‘volume’ of a parallelepiped formed by the vectors ŵ1, ŵ2, . . . , ŵk , 2 ≤ k ≤ 2N , regarded as
deviations from an orbit of an N -degree-of-freedom Hamiltonian system, or a 2N -dimensional symplectic map.

It is the main purpose of this paper to study precisely such a generalization and reveal considerably more qualitative and
quantitative information about the local and global dynamics of these systems. Before we proceed to describe this generalization,
however, let us first summarize what we know about the properties of the SALI for the case of two deviation vectors ŵ1, ŵ2:

(1) In the case of chaotic orbits, the deviation vectors ŵ1, ŵ2 eventually become aligned in the direction of the maximal Lyapunov
exponent, and SALI(t) falls exponentially to zero. An analytical study of SALI’s behavior for chaotic orbits was carried out
in [17] where it was shown that

SALI(t) ∝ e−(σ1−σ2)t , (9)

σ1, σ2 being the two largest LCEs.
(2) In the case of regular motion, on the other hand, the orbit lies on a torus and the vectors ŵ1, ŵ2 eventually fall on its tangent

space, following a t−1 time evolution, having in general different directions. In this case, the SALI oscillates about values that
are different from zero (for more details see [16]). This behavior is due to the fact that for regular orbits the norm of a deviation
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vector increases linearly in time along the flow. Thus, our normalization procedure brings about a decrease of the magnitude of
the coordinates perpendicular to the torus at a rate proportional to t−1 and so ŵ1, ŵ2 eventually fall on the tangent space of the
torus.

Note that in the case of 2D maps the torus is actually an invariant curve and its tangent space is one-dimensional. So, in this
case, the two unit deviation vectors eventually become linearly dependent and SALI becomes zero following a power law. This is,
of course, different than the exponential decay of SALI for chaotic orbits and thus SALI can distinguish easily between the two
cases even in 2D maps [15]. Thus, although the behavior of SALI in 2D maps is clearly understood, the fact remains that SALI
does not always have the same behavior for regular orbits, as it may oscillate about a constant or decay to zero by a power law,
depending on the dimensionality of the tangent space of the reference orbit. It might, therefore, be interesting to ask whether this
index can be generalized, so that different power laws may be found to characterize regular motion in higher dimensions. It is one
of the principal aims of this paper to show that such a generalization is possible.

Let us make one final remark concerning the behavior of SALI for chaotic orbits: Looking at Eq. (9), one might wonder what
would happen in the case of a chaotic orbit whose two largest Lyapunov exponents σ1 and σ2 are equal or almost equal. Although
this may not be common in generic Hamiltonian systems, such cases can be found in the literature. In one such example [39], very
close to a particular unstable periodic orbit of a 15-degree-of-freedom Hamiltonian system, the two largest Lyapunov exponents
are nearly equal σ1 − σ2 ≈ 0.0002. Even though, in that example, SALI still tends to zero at the rate indicated by (9), it is evident
that the chaotic nature of an orbit cannot be revealed very fast by the SALI method. It is, therefore, clear that a more detailed
analysis of the local dynamics is needed to further explore the properties of specific orbits, remedy the drawbacks and improve
upon the advantages of the SALI. For example, if we could define an index that depends on several Lyapunov exponents, this might
accelerate considerably the identification of chaotic motion.

3. Definition of the GALI

Let us consider an autonomous Hamiltonian system of N degrees of freedom having a Hamiltonian function

H(q1, q2, . . . , qN , p1, p2, . . . , pN ) = h = constant (10)

where qi and pi , i = 1, 2, . . . , N , are the generalized coordinates and conjugate momenta respectively. An orbit of this system is
defined by a vector Ex(t) = (q1(t), q2(t), . . . , qN (t), p1(t), p2(t), . . . , pN (t)), with xi = qi , xi+N = pi , i = 1, 2, . . . , N . The time
evolution of this orbit is governed by Hamilton equations of motion

dEx
dt

= EV(Ex) =

(
∂ H
∂ Ep

, −
∂ H
∂ Eq

)
, (11)

while the time evolution of an initial deviation vector Ew(0) = (dx1(0), . . . , dx2N (0)) with respect to the Ex(t) solution of (11) obeys
the variational equations

d Ew

dt
= M(Ex(t)) Ew, (12)

where M = ∂ EV/∂ Ex is the Jacobian matrix of EV .
The SALI is a quantity suitable for checking whether or not two normalized deviation vectors ŵ1, ŵ2 (having norm 1) eventually

become linearly dependent, by falling in the same direction. The linear dependence of the two vectors is equivalent to the vanishing
of the ‘area’ of the parallelogram having as edges the two vectors. Generalizing this idea we now follow the evolution of k deviation
vectors ŵ1, ŵ2, . . . , ŵk , with 2 ≤ k ≤ 2N , and determine whether these eventually become linearly dependent, by checking
whether the ‘volume’ of the parallelepiped having these vectors as edges goes to zero. This volume will be computed as the norm
of the wedge product of these vectors (see Appendix A for a definition of the wedge product).

All normalized deviation vectors ŵi , i = 1, 2, . . . , k, belong to the 2N -dimensional tangent space of the Hamiltonian flow.
Using as a basis of this space the usual set of orthonormal vectors

ê1 = (1, 0, 0, . . . , 0), ê2 = (0, 1, 0, . . . , 0), . . . , ê2N = (0, 0, 0, . . . , 1) (13)

any deviation vector ŵi can be written as

ŵi =

2N∑
j=1

wi j ê j , i = 1, 2, . . . , k (14)

where wi j are real numbers satisfying

2N∑
j=1

w2
i j = 1. (15)
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Thus, Eq. (A.12) of Appendix A gives
ŵ1
ŵ2
...

ŵk

 =


w11 w12 · · · w1 2N
w21 w22 · · · w2 2N
...

...
...

wk1 wk2 · · · wk 2N

 ·


ê1
ê2
...

ê2N

 . (16)

Using then Eq. (A.13) the wedge product of these k deviation vectors takes the form

ŵ1 ∧ ŵ2 ∧ · · · ∧ ŵk =

∑
1≤i1<i2<···<ik≤2N

∣∣∣∣∣∣∣∣∣
w1i1 w1i2 · · · w1ik

w2i1 w2i2 · · · w2ik
...

...
...

wki1 wki2 · · · wkik

∣∣∣∣∣∣∣∣∣ êi1 ∧ êi2 ∧ · · · ∧ êik , (17)

where the sum is performed over all possible combinations of k indices out of 2N .
If at least two of the normalized deviation vectors ŵi , i = 1, 2, . . . , k, are linearly dependent, all the k×k determinants appearing

in Eq. (17) will become zero making the ‘volume’ vanish. Equivalently the quantity

‖ŵ1 ∧ ŵ2 ∧ · · · ∧ ŵk‖ =


∑

1≤i1<i2<···<ik≤2N

∣∣∣∣∣∣∣∣∣
w1i1 w1i2 · · · w1ik

w2i1 w2i2 · · · w2ik
...

...
...

wki1 wki2 · · · wkik

∣∣∣∣∣∣∣∣∣
2

1/2

(18)

which we shall call the ‘norm’ of the wedge product, will also become zero. Thus, we define this important quantity as the
Generalized Alignment Index (GALI) of order k

GALIk(t) = ‖ŵ1(t) ∧ ŵ2(t) ∧ · · · ∧ ŵk(t)‖. (19)

In order to compute GALIk , therefore, we need to follow the evolution of an orbit with initial conditions Ex(0), using Eq. (11), as
well as the evolution of k initially linearly independent unit deviation vectors ŵi , i = 1, 2, . . . , k, using the variational equations
(12). At every time step, we normalize these deviation vectors to unity and compute GALIk as the norm of their wedge product
using Eq. (18).

Consequently, if GALIk(t) tends to zero, this would imply that the volume of the parallelepiped having the vectors ŵi as edges
also shrinks to zero, as at least one of the deviation vectors becomes linearly dependent on the remaining ones. On the other hand,
if GALIk(t) remains far from zero, as t grows arbitrarily, this would indicate the linear independence of the deviation vectors and
the existence of a corresponding parallelepiped, whose volume is different from zero for all time.

4. Theoretical results

4.1. Exponential decay of GALI for chaotic orbits

In order to investigate the dynamics in the vicinity of a chaotic orbit of the Hamiltonian system (10) with N degrees of freedom,
let us first recall some known properties of the Lyapunov characteristic exponents, following e.g. [45,46]. It has been shown that
the mean exponential rate of divergence σ (Ex(0), Ew) from a reference orbit with initial condition Ex(0) given by

σ (Ex(0), Ew) = lim
t→∞

1
t

ln
‖ Ew(t)‖
‖ Ew(0)‖

, (20)

exists and is finite. Furthermore there is a 2N -dimensional basis {û1, û2, . . . , û2N } of the tangent space of the Hamiltonian flow so
that σ (Ex(0), Ew) takes one of the 2N (possibly nondistinct) values

σi (Ex(0)) = σ
(
Ex(0), ûi

)
, i = 1, 2, . . . , 2N (21)

which are the Lyapunov characteristic exponents, ordered in size as follows:

σ1 ≥ σ2 ≥ · · · ≥ σ2N . (22)

These properties can be easily understood if the reference orbit is an unstable periodic solution of period T . In this case, the
matrix M of the variational equations (12) is a continuous T -periodic 2N × 2N matrix. The solution of Eq. (12) can be written as

Ew(t) = 8(t) · Ew(0), (23)
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where 8(t) is the so-called fundamental matrix (see e.g. [47]), such that 8(0) = I, the 2N × 2N identity matrix. The behavior of
the deviation vector Ew(t) and consequently the stability of the periodic orbit is determined by the eigenvalues λi of the so-called
monodromy matrix 8(T ), ordered as |λ1| ≥ |λ2| ≥ · · · ≥ |λ2N |. Let ûi , i = 1, 2, . . . , 2N , denote the corresponding eigenvectors.
Then for Ew(0) = ûi we have

Ew(nT ) = λn
i ûi , i = 1, 2, . . . , 2N (24)

and from (20) we get

σ
(
Ex(0), ûi

)
= lim

t→∞

1
nT

ln |λn
i | =

ln |λi |

T
, i = 1, 2, . . . , 2N . (25)

Furthermore, if we write

Ew(0) =

2N∑
i=1

ci ûi , (26)

it follows from (24) that the first nonvanishing coefficient ci dominates the subsequent evolution of Ew(nT ). Thus, if c1 6= 0 we get
from (20) σ (Ex(0), Ew) = σ1, if c1 = 0 and c2 6= 0 we get σ (Ex(0), Ew) = σ2 and so on. So, the evolution of the initial deviation
vector Ew(0) is well approximated by

Ew(nT ) =

2N∑
i=1

ci eσi nT ûi . (27)

For a nonperiodic orbit we cannot define such eigenvalues and eigenvectors as above. Nevertheless, Oseledec [1] has proven the
existence of basis vectors {û1, û2, . . . , û2N } and Lyapunov exponents for nonperiodic orbits. This is perhaps not surprising, since
periodic orbits are dense in the phase space of Hamiltonian systems and thus a periodic orbit of arbitrary large period can always
be found arbitrary close to any nonperiodic orbit. So, the time evolution of a deviation vector may be approximated by a variant of
Eq. (27), i.e.

Ew(t) =

2N∑
i=1

ci edi t ûi , (28)

where ci , di are real numbers depending on the specific phase space location through which the reference orbit passes. Thus, the
quantities di , i = 1, 2, . . . , 2N , may be thought of as ‘local Lyapunov exponents’ having as limits for t → ∞ the ‘global’ LCEs
σi , i = 1, 2, . . . , 2N . We notice that even if in some special cases where the vectors ûi , i = 1, 2, . . . , 2N , are known a priori, so
that one could set Ew(0) = ûi , the computational errors in the numerical evolution of the deviation vector would lead to the actual
computation of σ1 from Eq. (1) [5].

It is well known that Hamiltonian systems are generically non-integrable and possess Lyapunov exponents in chaotic domains
which are real and grouped in pairs of opposite sign with two of them being equal to zero. We, therefore, have σi = −σ2N−i+1 for
i = 1, 2, . . . , N and σ1 ≥ σ2 ≥ · · · ≥ σN−1 ≥ σN = σN+1 = 0 ≥ σN+2 ≥ · · · ≥ σ2N . Assuming that, after a certain time interval,
the di , i = 1, 2, . . . , 2N , do not fluctuate significantly about their limiting values, we write di ≈ σi and express the evolution of the
deviation vectors Ewi in the form

Ewi (t) =

2N∑
j=1

ci
j e

σ j t û j (29)

(see discussion in Section 5.1 and Fig. 1). Thus, if σ1 > σ2, a leading order estimate of the deviation vector’s Euclidean norm (for
t large enough) is given by

‖ Ewi (t)‖ ≈ |ci
1|e

σ1t . (30)

Consequently, the matrix C in (A.12) of coefficients of k normalized deviation vectors ŵi (t) = Ewi (t)/‖ Ewi (t)‖, i = 1, 2, . . . , k,
with 2 ≤ k ≤ 2N , using as basis of the vector space the set {û1, û2, . . . , û2N } becomes
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C(t) =
[
ci j
]

=



s1
c1

2

|c1
1|

e−(σ1−σ2)t
c1

3

|c1
1|

e−(σ1−σ3)t · · ·
c1

2N

|c1
1|

e−(σ1−σ2N )t

s2
c2

2

|c2
1|

e−(σ1−σ2)t
c2

3

|c2
1|

e−(σ1−σ3)t · · ·
c2

2N

|c2
1|

e−(σ1−σ2N )t

...
...

...
...

sk
ck

2

|ck
1|

e−(σ1−σ2)t
ck

3

|ck
1|

e−(σ1−σ3)t · · ·
ck

2N

|ck
1|

e−(σ1−σ2N )t


, (31)

with si = sign(ci
1) and i = 1, 2, . . . , k, j = 1, 2, . . . , 2N and so we have[

ŵ1 ŵ2 · · · ŵk
]T

= C ·
[
û1 û2 · · · û2N

]T (32)

with (T) denoting the transpose of a matrix. The wedge product of the k normalized deviation vectors is then computed as in Eq. (17)
using

ŵ1(t) ∧ ŵ2(t) ∧ · · · ∧ ŵk(t) =

∑
1≤i1<i2<···<ik≤2N

∣∣∣∣∣∣∣∣∣
c1i1 c1i2 · · · c1ik

c2i1 c2i2 · · · c2ik
...

...
...

cki1 cki2 · · · ckik

∣∣∣∣∣∣∣∣∣ ûi1 ∧ ûi2 ∧ · · · ∧ ûik . (33)

Note that the quantity

Sk =


∑

1≤i1<i2<···<ik≤2N

∣∣∣∣∣∣∣∣∣
c1i1 c1i2 · · · c1ik

c2i1 c2i2 · · · c2ik
...

...
...

cki1 cki2 · · · ckik

∣∣∣∣∣∣∣∣∣
2

1/2

(34)

is not identical to the norm (18) of the k-vector ŵ1(t) ∧ ŵ2(t) ∧ · · · ∧ ŵk(t) as the wedge product in Eq. (33) is not expressed with
respect to the basis (13). Thus one should consider the transformation[

û1 û2 · · · û2N
]T

= Tc ·
[
ê1 ê2 · · · ê2N

]T
, (35)

between the two bases, with Tc denoting the transformation matrix. Of course, when considering the wedge product of 2N deviation
vectors one can easily show that

‖ŵ1 ∧ ŵ2 ∧ · · · ∧ ŵ2N ‖ = S2N · | det Tc|. (36)

If, on the other hand, we consider the wedge product of fewer than 2N deviation vectors, the norm (18) and the quantity Sk (34)
are not related through a simple expression like (36). We shall proceed, however, to obtain results using (34) instead of (18), as we
do not expect that such a change of basis will affect significantly the dynamics and alter our conclusions for the following reasons:
First, we note that both quantities are zero when at least two of the k deviation vectors are linearly dependent, due to the fact that all
the determinants appearing in Eqs. (18) and (34) vanish. In addition, the transformation matrix Tc is not singular as the sets {ûi } and
{êi }, i = 1, 2, . . . , 2N , continue to be valid bases of the vector space. Thus, the two quantities are expected to behave in a similar
way in the case of chaotic orbits, where the deviation vectors tend to become linearly dependent. Thus, by studying analytically
the time evolution of Sk through (34), we expect to derive accurate approximations of the behavior of the GALIk (19) for chaotic
orbits. The validity of this approximation is numerically tested and verified in Section 5.

Let us now see how this approximation is derived: The determinants appearing in the definition of Sk (see Eq. (34)) can be
divided into two categories depending on whether or not they contain the first column of matrix C. Using standard properties of
determinants, we see that those that do contain the first column yield

D1, j1, j2,..., jk−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s1
c1

j1

|c1
1|

e−(σ1−σ j1 )t
· · ·

c1
jk−1

|c1
1|

e−(σ1−σ jk−1 )t

s2
c2

j1

|c2
1|

e−(σ1−σ j1 )t
· · ·

c2
jk−1

|c2
1|

e−(σ1−σ jk−1 )t

...
...

...

sk
ck

j1

|ck
1|

e−(σ1−σ j1 )t
· · ·

ck
jk−1

|ck
1|

e−(σ1−σ jk−1 )t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s1
c1

j1

|c1
1|

· · ·

c1
jk−1

|c1
1|

s2
c2

j1

|c2
1|

· · ·

c2
jk−1

|c2
1|

...
...

...

sk
ck

j1

|ck
1|

· · ·

ck
jk−1

|ck
1|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e
−

[
(σ1−σ j1 )+(σ1−σ j2 )+···+(σ1−σ jk−1 )

]
t

(37)

with 1 < j1 < j2 < · · · < jk−1 ≤ 2N . Thus, the time evolution of D1, j1, j2,..., jk−1 is mainly determined by the exponential law

D1, j1, j2,..., jk−1 ∝ e
−

[
(σ1−σ j1 )+(σ1−σ j2 )+···+(σ1−σ jk−1 )

]
t
. (38)

Similarly, we deduce that the determinants that do not contain the first column of matrix C (31) have the form

D j1, j2,..., jk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1
j1

|c1
1|

e−(σ1−σ j1 )t
c1

j2

|c1
1|

e−(σ1−σ j2 )t
· · ·

c1
jk

|c1
1|

e−(σ1−σ jk )t

c2
j1

|c2
1|

e−(σ1−σ j1 )t
c2

j2

|c2
1|

e−(σ1−σ j2 )t
· · ·

c2
jk

|c2
1|

e−(σ1−σ jk )t

...
...

...

ck
j1

|ck
1|

e−(σ1−σ j1 )t
ck

j2

|ck
1|

e−(σ1−σ j2 )t
· · ·

ck
jk

|ck
1|

e−(σ1−σ jk )t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1
j1

|c1
1|

c1
j2

|c1
1|

· · ·
c1

jk

|c1
1|

c2
j1

|c2
1|

c2
j2

|c2
1|

· · ·
c2

jk

|c2
1|

...
...

...

ck
j1

|ck
1|

ck
j1

|ck
1|

· · ·

ck
jk−1

|ck
1|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e
−

[
(σ1−σ j1 )+(σ1−σ j2 )+···+(σ1−σ jk−1 )+(σ1−σ jk )

]
t

(39)

with 1 < j1 < j2 < · · · < jk−1 < jk ≤ 2N . Thus, the values of these determinants also tend to zero following an exponential law

D j1, j2,..., jk ∝ e
−

[
(σ1−σ j1 )+(σ1−σ j2 )+···+(σ1−σ jk−1 )+(σ1−σ jk )

]
t
. (40)

Clearly, from all determinants appearing in the definition of Sk , (34), the one that decreases the slowest is the one containing the
first k columns of matrix C in (31):

D1,2,3,...,k ∝ e−[(σ1−σ2)+(σ1−σ3)+···+(σ1−σk )]t . (41)

All other determinants appearing in Eqs. (38) and (40) tend to zero faster than D1,2,3,...,k since the quantities in their exponentials
are larger than or equal in magnitude to the exponent in (41). We, therefore, conclude that the rate of decrease of Sk is dominated
by (41), yielding the approximation

Sk(t) ∝ e−[(σ1−σ2)+(σ1−σ3)+···+(σ1−σk )]t . (42)

Furthermore, since the norm (18) of the k-vector ŵ1 ∧ ŵ2 ∧ · · · ∧ ŵk is expected to evolve in a similar way to Sk , we conclude that
GALIk tends to zero in the same manner as above, i.e.

GALIk(t) ∝ e−[(σ1−σ2)+(σ1−σ3)+···+(σ1−σk )]t . (43)

We note here that in [17], where it was shown theoretically that SALI tends exponentially to zero for chaotic orbits as SALI(t) ∝

exp{−(σ1 − σ2)t} (which is equivalent to Eq. (43) for k = 2), Eq. (29) was also retrieved, although it was wrongly assumed that
the LCEs are related to the eigenvalues of matrix M of the variational equations (12).

In the previous analysis we assumed that σ1 > σ2 so that the norm of each deviation vector can be well approximated by Eq.
(30). If the first m Lyapunov exponents, with 1 < m < k, are equal, or very close to each other, i.e. σ1 ' σ2 ' · · · ' σm Eq. (43)
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becomes

GALIk(t) ∝ e−[(σ1−σm+1)+(σ1−σm+2)+···+(σ1−σk )]t , (44)

which still describes an exponential decay. However, for k ≤ m < N the GALIk does not tend to zero as there exists at least one
determinant of the matrix C that does not vanish. In this case, of course, one should increase the number of deviation vectors until
an exponential decrease of GALIk is achieved. The extreme situation where all σi = 0 corresponds to motion on quasiperiodic tori,
where all orbits are regular and is described below.

4.2. The evaluation of GALI for regular orbits

As is well known, regular orbits of an N -degree-of-freedom Hamiltonian system (10) typically lie on N -dimensional tori. If
such tori are found around a stable periodic orbit, they can be accurately described by N formal integrals of motion in involution, so
that the system would appear locally integrable. This means that we could perform a local transformation to action–angle variables,
considering as actions J1, J2, . . . , JN the values of the N formal integrals, so that Hamilton’s equations of motion locally attain the
form

J̇i = 0
θ̇i = ωi (J1, J2, . . . , JN )

i = 1, 2, . . . , N . (45)

These can be easily integrated to give

Ji (t) = Ji0
θi (t) = θi0 + ωi (J10, J20, . . . , JN0) t i = 1, 2, . . . , N , (46)

where Ji0, θi0, i = 1, 2, . . . , N , are the initial conditions.
Denoting as ξi , ηi , i = 1, 2, . . . , N , small deviations of Ji and θi respectively, the variational equations of system (45), describing

the evolution of a deviation vector are

ξ̇i = 0

η̇i =

N∑
j=1

ωi j · ξ j
i = 1, 2, . . . , N , (47)

where

ωi j =
∂ωi

∂ J j

∣∣∣∣
EJ0

i, j = 1, 2, . . . , N , (48)

and EJ0 = (J10, J20, . . . , JN0) = constant represents the N -dimensional vector of the initial actions. The solution of these equations
is

ξi (t) = ξi (0)

ηi (t) = ηi (0) +

[
N∑

j=1

ωi jξ j (0)

]
t i = 1, 2, . . . , N . (49)

From Eq. (49) we see that an initial deviation vector Ew(0) with coordinates ξi (0), i = 1, 2, . . . , N , in the action variables and
ηi (0), i = 1, 2, . . . , N , in the angles, i.e. Ew(0) = (ξ1(0), ξ2(0), . . . , ξN (0), η1(0), η2(0), . . . , ηN (0)), evolves in time in such a way
that its action coordinates remain constant, while its angle coordinates increase linearly in time. This behavior implies an almost
linear increase of the norm of the deviation vector. To see this, let us assume that initially this vector Ew(0) has unit magnitude, i.e.

N∑
i=1

ξi (0)2
+

N∑
i=1

ηi (0)2
= 1 (50)

whence the time evolution of its norm is given by

‖ Ew(t)‖ =

1 +

 N∑
i=1

(
N∑

j=1

ωi jξ j (0)

)2
 t2

+

[
2

N∑
i=1

(
ηi (0)

N∑
j=1

ωi jξ j (0)

)]
t


1/2

, (51)
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while the normalized deviation vector ŵ(t) becomes

ŵ(t) =
1

‖ Ew(t)‖

(
ξ1(0), . . . , ξN (0), η1(0) +

[
N∑

j=1

ω1 jξ j (0)

]
t, . . . , ηN (0) +

[
N∑

j=1

ωN jξ j (0)

]
t

)
. (52)

Since the norm (51) of a deviation vector, for t large enough, increases practically linearly with t , the normalized deviation vector
(52) tends to fall on the tangent space of the torus, since its coordinates perpendicular to the torus (i.e. the coordinates along
the action directions) vanish following a t−1 rate. This behavior has already been shown numerically in the case of an integrable
Hamiltonian of two degrees of freedom in [16].

Using as a basis of the 2N -dimensional tangent space of the Hamiltonian flow the 2N unit vectors {v̂1, v̂2, . . . , v̂2N }, such that
the first N of them, v̂1, v̂2, . . . , v̂N , correspond to the N action variables and the remaining ones, v̂N+1, v̂N+2, . . . , v̂2N , to the N
conjugate angle variables, any unit deviation vector ŵi , i = 1, 2, . . ., can be written as

ŵi (t) =
1

‖ Ew(t)‖

[
N∑

j=1

ξ i
j (0)v̂ j +

N∑
j=1

(
ηi

j (0) +

N∑
k=1

ω jkξ
i
k(0)t

)
v̂N+ j

]
. (53)

We point out that the quantities ωi j , i, j = 1, 2 . . . , N , in (48), depend only on the particular reference orbit and not on the choice
of the deviation vector. We also note that the basis v̂i , i = 1, 2, . . . , 2N , depends on the specific torus on which the motion occurs
and is related to the usual vector basis êi , i = 1, 2, . . . , 2N , of Eq. (13), through a non-singular transformation, similar to that of
Eq. (35), having the form[

v̂1 v̂2 · · · v̂2N
]T

= To ·
[
ê1 ê2 · · · ê2N

]T (54)

with To denoting the transformation matrix. The basis {ê1, ê2, . . . , ê2N } is used to describe the evolution of a deviation vector with
respect to the original qi , pi i = 1, 2, . . . , N , coordinates of the Hamiltonian system (10), while the basis {v̂1, v̂2, . . . , v̂2N } is used
to describe the same evolution, if we consider the original system in action–angle variables, so that the equations of motion are the
ones given by (45).

At this point we make the following remark: If the initial deviation vector already lies in the tangent space of the torus it will
remain constant for all time! Indeed, taking for the initial conditions of this vector

ξi (0) = 0, i = 1, 2, . . . , N , (55)

with

N∑
i=1

ηi (0)2
= 1, (56)

we conclude from Eq. (49) that

ξi (t) = 0, ηi (t) = ηi (0), (57)

i.e. the deviation vector remains unchanged having its norm always equal to 1. In particular, such a vector has the form

ŵ(t) = (0, 0, . . . , 0, η1(0), η2(0), . . . , ηN (0)) . (58)

Let us now study the case of k, general, linearly independent unit deviation vectors {ŵ1, ŵ2, . . . , ŵk} with 2 ≤ k ≤ 2N . Using
as vector basis the set {v̂1, v̂2, . . . , v̂2N } we get[

ŵ1 ŵ2 · · · ŵk
]T

= D ·
[
v̂1 v̂2 · · · v̂2N

]T
. (59)

If no deviation vector is initially located in the tangent space of the torus, matrix D has the form

D =
[
di j
]

=
1

k∏
m=1

‖ Ewm(t)‖
·



ξ1
1 (0) · · · ξ1

N (0) η1
1(0) +

N∑
m=1

ω1mξ1
m(0)t · · · η1

N (0) +

N∑
m=1

ωNmξ1
m(0)t

ξ2
1 (0) · · · ξ2

N (0) η2
1(0) +

N∑
m=1

ω1mξ2
m(0)t · · · η2

N (0) +

N∑
m=1

ωNmξ2
m(0)t

...
...

...
...

ξ k
1 (0) · · · ξ k

N (0) ηk
1(0) +

N∑
m=1

ω1mξ k
m(0)t · · · ηk

N (0) +

N∑
m=1

ωNmξ k
m(0)t


, (60)
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where i = 1, 2, . . . , k and j = 1, 2, . . . , 2N . Recalling our earlier discussion (see (50)–(53)), we note that the norm of vector Ewi (t)
for long times grows linearly with t as

Mi (t) = ‖ Ewi (t)‖ ∝ t. (61)

Defining then by ξ
0,k
i and ηk

i the k × 1 column matrices

ξ
0,k
i =

[
ξ1

i (0) ξ2
i (0) · · · ξ k

i (0)
]T

, ηk
i =

[
η1

i (0) η2
i (0) · · · ηk

i (0)
]T

, (62)

the matrix D of (60) assumes the much simpler form

D(t) =
1

k∏
i=1

Mi (t)
·

[
ξ

0,k
1 · · · ξ

0,k
N ηk

1 +

N∑
i=1

ω1iξ
0,k
i t · · · ηk

N +

N∑
i=1

ωNiξ
0,k
i t

]
=

1
k∏

i=1
Mi (t)

· D0,k(t). (63)

Suppose now that we have m linearly independent deviation vectors, with m ≤ k and m ≤ N , initially located in the tangent space
of the torus and let them be the first m deviation vectors in Eq. (59). This implies, in the above notation, that the ξ i vectors in (63)
now have the form

ξ
m,k
i =

[
0 0 · · · 0 ξm+1

i (0) ξm+2
i (0) · · · ξ k

i (0)
]T

(64)

where the first superscript, m, refers to the number of first components being equal to zero. Thus, the matrix D of (63) in this case
reads

D(t) =
1

k−m∏
i=1

Mm+i (t)
·

[
ξ

m,k
1 · · · ξ

m,k
N ηk

1 +

N∑
i=1

ω1iξ
m,k
i t · · · ηk

N +

N∑
i=1

ωNiξ
m,k
i t

]
=

1
k−m∏
i=1

Mm+i (t)
· Dm,k(t), (65)

where the first superscript of Dm,k(t) in Eqs. (63) and (65) has an analogous meaning as in the ξ
m,k
i . We note that for k = m we

define
∏0

i=1 Mm+i (t) = 1.
Using again Eq. (A.13), we write the wedge product of the k normalized deviation vectors as

ŵ1(t) ∧ ŵ2(t) ∧ · · · ∧ ŵk(t) =

∑
1≤i1<i2<···<ik≤2N

∣∣∣∣∣∣∣∣∣
d1i1 d1i2 · · · d1ik

d2i1 d2i2 · · · d2ik
...

...
...

dki1 dki2 · · · dkik

∣∣∣∣∣∣∣∣∣ ûi1 ∧ ûi2 ∧ · · · ∧ ûik (66)

and introduce the analogous quantity

S′

k =


∑

1≤i1<i2<···<ik≤2N

∣∣∣∣∣∣∣∣∣
d1i1 d1i2 · · · d1ik

d2i1 d2i2 · · · d2ik
...

...
...

dki1 dki2 · · · dkik

∣∣∣∣∣∣∣∣∣
2

1/2

(67)

as in the case of chaotic orbits; see (33) and (34) respectively.
As we have already explained, the k deviation vectors will eventually fall on the N -dimensional tangent space of the torus on

which the motion occurs. Of course, if some of them are already located in the tangent space, at t = 0, they will remain there forever.
In their final state, the deviation vectors will have coordinates only in the N -dimensional space spanned by v̂N+1, v̂N+2, . . . , v̂2N .
Now, if we start with 2 ≤ k ≤ N general deviation vectors there is no particular reason for them to become linearly dependent and
their wedge product will be different from zero, yielding S′

k and GALIk which are not zero. However, if we start with N < k ≤ 2N
deviation vectors, some of them will necessarily become linearly dependent. Thus, in this case, their wedge product (as well as S′

k
and GALIk) will be zero.

We, therefore, need to examine in more detail the behavior of these S′

k . Since, in general, we choose the initial deviation vectors
randomly (insisting only that they be linearly independent), the most common situation is that none of the initial deviation vectors
is tangent to the torus. However, as we are not certain that this will always hold, let us suppose that 0 < m ≤ N of our deviation
vectors are initially in the tangent space of the torus. For 2 ≤ k ≤ N , this will make no difference, as the GALIk tends to a non-zero
constant. However, for N < k ≤ 2N , GALIk goes to zero by a power law and the fact that m vectors are already in the tangent
space, at t = 0, may significantly affect the decay rate of the index. Thus, in such cases, the behavior of GALI needs to be treated
separately.
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4.2.1. The case of m = 0 tangent initial deviation vectors
Let us consider first the most general case where no deviation vector is initially tangent to the torus. In this case, the matrix D,

whose elements appear in the definition of S′

k , has the form given in Eq. (63). So all determinants appearing in the definition of S′

k
have as a common factor the quantity 1/

∏k
i=1 Mi (t), which, due to (61), decreases to zero according to the power law

1
k∏

i=1
Mi (t)

∝
1
tk . (68)

In order to determine the precise time evolution of S′

k , we search for the fastest increasing determinants of all the possible k × k
minors of the matrix D0,k , in (63), as time t grows.

Let us start with k being less than or equal to the dimension of the tangent space of the torus, i.e. 2 ≤ k ≤ N . The fastest
increasing determinants in this case are the N !/(k!(N − k)!) determinants, whose k columns are chosen among the last N columns
of matrix D0,k :

∆0,k
j1, j2,..., jk =

∣∣∣∣∣ηk
j1 +

N∑
i=1

ω j1iξ
0,k
i t ηk

j2 +

N∑
i=1

ω j2iξ
0,k
i t · · · ηk

jk +

N∑
i=1

ω jk iξ
0,k
i t

∣∣∣∣∣ , (69)

with 1 ≤ j1 < j2 < · · · < jk ≤ N . Using standard properties of determinants, we easily see that the faster time evolution of
∆0,k

j1, j2,..., jk is mainly determined by the behavior of determinants of the form

∣∣ω j1m1ξ
0,k
m1

t ω j2m2ξ
0,k
m2

t · · · ω jk mk ξ
0,k
mk

t
∣∣ = tk

k∏
i=1

ω ji mi ·
∣∣ξ0,k

m1
ξ0,k

m2
· · · ξ0,k

mk

∣∣ ∝ tk, (70)

where mi ∈ {1, 2, . . . , N }, i = 1, 2, . . . , k, with mi 6= m j , for all i 6= j . Thus, from (68) and (70) we conclude that the contribution
to the behavior of S′

k of the determinants related to ∆0,k
j1, j2,..., jk is to provide constant terms in (67). All other determinants appearing

in the definition of S′

k , not being of the form of ∆0,k
j1, j2,..., jk , contain at least one column from the first N columns of matrix D0,k and

introduce in (67) terms that grow at a rate slower than tk , which will ultimately have no bearing on the behavior of GALIk(t). To
see this, let us consider a particular determinant of this kind:

∆0,k
m =

∣∣∣∣∣ξ0,k
1 · · · ξ0,k

m ηk
1 +

N∑
i=1

ω1iξ
0,k
i t · · · ηk

k−m +

N∑
i=1

ωk−m iξ
0,k
i t

∣∣∣∣∣ , (71)

containing the first m columns of matrix D0,k , which are related to the action coordinates of the system, and the first k − m columns
of the angle related columns of D0,k , with 1 ≤ m ≤ k. The first m columns of ∆0,k

m are time independent. Using repeatedly a
standard property of determinants, we easily see that the time evolution of ∆0,k

m is mainly determined by the time evolution of
determinants of the form∣∣∣ξ0,k

1 ξ
0,k
2 · · · ξ0,k

m ω1i1ξ
0,k
i1

t ω2i2ξ
0,k
i2

t · · · ωk−m ik−m ξ
0,k
ik−m

t
∣∣∣ ∝ tk−m, (72)

with i j ∈ {m + 1, m + 2, . . . , N }, j = 1, 2, . . . , k − m and i j 6= il , for all j 6= l. Thus, the contribution to the behavior of S′

k of
determinants similar to ∆0,k

m are terms proportional to tk−m/tk
= 1/tm (1 ≤ m ≤ k), tending to zero as t grows. Since the k × k

determinants appearing in the definition of S′

k involve both terms of the form (69), growing as tk , and of the form (71), growing as
tk−m , the overall behavior of S′

k will be defined by determinants growing as tk , which when combined with (68) yields the important
result

GALIk(t) ≈ constant for 2 ≤ k ≤ N . (73)

Next, let us now turn to the case of k deviation vectors with N < k ≤ 2N . The fastest growing determinants are again those
containing the last N columns of the matrix D0,k :

∆0,k
j1, j2,..., jk−N ,1,2,...,N =

∣∣∣∣∣ξ0,k
j1

· · · ξ
0,k
jk−N

ηk
1 +

N∑
i=1

ω1iξ
0,k
i t · · · ηk

N +

N∑
i=1

ωNiξ
0,k
i t

∣∣∣∣∣ , (74)

with 1 ≤ j1 < j2 < · · · < jk−N ≤ N . The first k − N columns of ∆0,k
j1, j2,..., jk−N ,1,2,...,N are chosen among the first N columns of

D0,k which are time independent. So there exist N !/((k − N )!(2N − k)!) determinants of the form (74), which can be written as a
sum of simpler k × k determinants, each containing in the position of its last N columns ηk

i , i = 1, 2, . . . , N , and/or columns of
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the form ω j iξ
0,k
i t with i, j = 1, 2, . . . , N . We exclude the ones where ξ

0,k
i , i = 1, 2, . . . , N , appear more than once, since in that

case the corresponding determinant is zero. Among the remaining determinants, the fastest increasing ones are those containing as
many columns proportional to t as possible.

Since t is always multiplied by the ξ
0,k
i , and such columns occupy the first k − N columns of ∆0,k

j1, j2,..., jk−N ,1,2,...,N , t appears at

most N − (k − N ) = 2N − k times. Otherwise the determinant would contain the same ξ
0,k
i column at least twice and would be

equal to zero. The remaining k − (2N − k) − (k − N ) = k − N columns are filled by the ηk
i each of which appears at most once.

Thus, the time evolution of ∆0,k
j1, j2,..., jk−N ,1,2,...,N is mainly determined by determinants of the form∣∣∣ξ0,k

j1
· · · ξ

0,k
jk−N

η
0,k
i1

· · · η
0,k
ik−N

ωik−N+1m1ξ
0,k
m1

t · · · ωiN m2N−k ξ
0,k
i2N−k

t
∣∣∣ ∝ t2N−k, (75)

with il ∈ {1, 2, . . . , N }, l = 1, 2, . . . , N , il 6= i j , for all l 6= j and ml ∈ {1, 2, . . . , N }, l = 1, 2, . . . , 2N − k, ml 6∈

{ j1, j2, . . . , jk−N }, ml 6= m j , for all l 6= j . So determinants of the form (74) contribute to the time evolution of S′

k by introducing
terms proportional to t2N−k/tk

= 1/t2(k−N ). All other determinants appearing in the definition of S′

k , not having the form of
∆0,k

j1, j2,..., jk−N ,1,2,...,N , introduce terms that tend to zero faster than 1/t2(k−N ) since they contain more than k − N time independent

columns of the form ξ
0,k
i , i = 1, 2, . . . , N . Thus S′

k and consequently GALIk tend to zero following a power law of the form

GALIk(t) ∝
1

t2(k−N )
for N < k ≤ 2N . (76)

4.2.2. The case of m > 0 tangent initial deviation vectors
Finally, let us consider the behavior of GALIk for the special case where m initial deviation vectors, with m ≤ k and m ≤ N , are

located in the tangent space of the torus. In this case, matrix D, whose elements appear in the definition of S′

k , has the form given
by (65). Thus, all determinants appearing in the definition of S′

k have as a common factor the quantity 1/
∏k−m

i=1 Mm+i (t), which
decreases to zero following a power law

1
k−m∏
i=1

Mm+i (t)
∝

1
tk−m . (77)

Proceeding in exactly the same manner as in the m = 0 case above, we deduce that, in the case of 2 ≤ k ≤ N , the fastest growing
k × k determinants resulting from the matrix Dm,k are of the form∣∣∣ηk

i1
ηk

i2
· · · ηk

im
ωim+1n1ξ

0,k
n1

t ωim+2n2ξ
0,k
n2

t · · · ωik nk−m ξ0,k
nk−m

t
∣∣∣ ∝ tk−m, (78)

with il ∈ {1, 2, . . . , N }, l = 1, 2, . . . , k with il 6= i j for l 6= j , and nl ∈ {1, 2, . . . , N }, l = 1, 2, . . . , k − m with nl 6= n j , for l 6= j .
Hence, we conclude that the behavior of S′

k , and consequently of GALIk is defined by the behavior of determinants having the form
of (78) which, when combined with (77), implies that

GALIk(t) ≈ constant for 2 ≤ k ≤ N . (79)

The case of N < k ≤ 2N deviation vectors, however, with m > 0 initially tangent vectors, yields a considerably different result.
Following entirely analogous arguments to in the m = 0 case, we find that, if m < k − N , S′

k and GALIk evolve proportionally to
t2N−k/tk−m

= 1/t2(k−N )−m . On the other hand, if m ≥ k − N , one can show that the fastest growing determinant is proportional
to t N−m . In this case, S′

k and GALIk evolve in time following a quite different power law: t N−m/tk−m
= 1/tk−N .

Summarizing the results of this section, we see that GALIk for regular motion remains essentially constant when k ≤ N , while
it tends to zero for k > N following a power law which depends on the number m (m ≤ N and m ≤ k) of deviation vectors initially
tangent to the torus. In conclusion, we have shown that

GALIk(t) ∝


constant if 2 ≤ k ≤ N

1
t2(k−N )−m if N < k ≤ 2N and 0 ≤ m < k − N

1
tk−N if N < k ≤ 2N and m ≥ k − N .

(80)

5. Numerical verification and applications

In order to apply the GALI method to Hamiltonian systems and verify the theoretically predicted behavior of the previous
sections, we shall use two simple examples with two (2D) and three (3D) degrees of freedom: the well-known 2D Hénon–Heiles
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Fig. 1. (a) The evolution of L1(t) (solid curve), L2(t) (dashed curve) and L1(t)− L2(t) (dotted curve) for a chaotic orbit with initial conditions x = 0, y = −0.25,
px = 0.42, py = 0 of the 2D system (81). (b) The evolution of GALI2, GALI3 and GALI4 for the same orbit. The plotted lines correspond to functions proportional
to e−σ1t (solid line), e−2σ1t (dashed line) and e−4σ1t (dotted line) for σ1 = 0.047. Note that the t-axis is linear. The evolution of the norm of the deviation vector
Ew(t) (with ‖ Ew(0)‖ = 1) used for the computation of L1(t) is also plotted in (b) (gray curve).

system [48], described by the Hamiltonian

H2 =
1
2
(p2

x + p2
y) +

1
2
(x2

+ y2) + x2 y −
1
3

y3, (81)

and the 3D Hamiltonian system

H3 =

3∑
i=1

ωi

2
(q2

i + p2
i ) + q2

1 q2 + q2
1 q3, (82)

studied in [49,5]. We keep the parameters of the two systems fixed at the energies H2 = 0.125 and H3 = 0.09, with ω1 = 1,
ω2 =

√
2 and ω3 =

√
3. In order to illustrate the behavior of GALIk , for different values of k, we shall consider some representative

cases of chaotic and regular orbits of the two systems.
Additionally, we shall study the higher dimensional example of a 15D Hamiltonian, describing a chain of 15 particles with

quadratic and quartic nearest neighbor interaction, known as the famous Fermi–Pasta–Ulam (FPU) model [50,51]:

H15 =
1
2

15∑
i=1

p2
i +

15∑
i=0

[
1
2
(qi+1 − qi )

2
+

1
4
β(qi+1 − qi )

4
]

(83)

where qi is the displacement of the i th particle from its equilibrium point and pi is the conjugate momentum. This is a model we
have recently analyzed in [39] and we shall use here the same values of the energy H15 = 26.68777 and β = 1.04 as in that study.

5.1. A 2D Hamiltonian system

Let us consider first a chaotic orbit of the 2D Hamiltonian (81), with initial conditions x = 0, y = −0.25, px = 0.42, py = 0. In
Fig. 1(a) we see the time evolution of L1(t) of this orbit. The computation is carried out until L1(t) stops having large fluctuations
and approaches a positive value (indicating the chaotic nature of the orbit), which could be considered as a good approximation of
the maximal LCE, σ1. Actually, for t ≈ 105, we find σ1 ≈ 0.047.

We recall that 2D Hamiltonian systems have only one positive LCE σ1, since the second largest is σ2 = 0. It also holds that
σ3 = −σ2 and σ4 = −σ1 and thus formula (43), which describes the time evolution of GALIk for chaotic orbits, gives

GALI2(t) ∝ e−σ1t , GALI3(t) ∝ e−2σ1t , GALI4(t) ∝ e−4σ1t . (84)

In Fig. 1(b) we plot GALIk , k = 2, 3, 4, for the same chaotic orbit as a function of time t . We plot t on a linear scale so that, if (84) is
valid, the slopes of GALI2, GALI3 and GALI4 should approximately be −σ1/ ln 10, −2σ1/ ln 10 and −4σ1/ ln 10 respectively. From
Fig. 1(b) we see that lines having precisely these slopes, for σ1 = 0.047, approximate quite accurately the computed values of the
GALIs. The biggest deviation between the theoretical curve and numerical data appears in the case of GALI4 where the theoretical
prediction underestimates the decaying rate of the index, but even in this case the difference does not appear too significant. Note,
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Fig. 2. The absolute difference between GALI2 and SALI for the chaotic orbit of Fig. 1 as a function of time t .

however, the important difference in the times it takes to decide about the chaotic nature of the orbit: Waiting for the maximal LCE
to converge in Fig. 1(a), one needs more than 104 time units, while, as we see in Fig. 1(b), the GALIks provide this information in
less than 400 time units!

We also note that, plotting in this example the evolution of the quantity ‖ Ew(t)‖−1 (with ‖ Ew(0)‖ = 1), which is used to determine
L1(t) in (1) and is practically identified with the Fast Lyapunov Indicator (FLI), we obtain in Fig. 1(b) a graph similar to that of
GALI2(t). This is not surprising, as both ‖ Ew(t)‖−1 and GALI2(t) tend exponentially to zero following a decay proportional to e−σ1t

(see Eqs. (30) and (84)). From the results of Fig. 1(b) we see that the different plotted quantities reach the limit of the computer’s
accuracy (10−16) at different times and in particular GALI2 at t ≈ 800, GALI3 at t ≈ 400, GALI4 at t ≈ 150 and ‖ Ew(t)‖−1 at
t ≈ 720. The CPU times needed for computing the evolution of the indices up to these times were: 0.220 s for ‖ Ew(t)‖−1, 0.295 s
for GALI2, 0.165 s for GALI3 and 0.070 s for GALI4. Thus, in this case also, it is clear that the higher order GALIk (with k > 2)
can identify the chaotic nature of an orbit faster than the methods of the maximal LCE, the FLI or the SALI (equivalent to GALI2;
see below).

It is interesting to remark at this point (as mentioned in Section 4.1) that the accuracy of the exponential laws (84) is due to the
fact that the local Lyapunov exponents cease to fluctuate significantly about their limit values, after a relatively short time interval.
To see this, we have plotted in Fig. 1(a) the two nonnegative local Lyapunov exponents L1(t), L2(t), as well as their difference.
Note that L1(t) − L2(t) begins to be well approximated by σ1 − σ2 = σ1 already for times t of order 102 units. A similar behavior
of such L1(t) − L i (t), i = 2, 3, . . . , 2N , differences are observed for the other Hamiltonians that we studied in this paper having
three or more degrees of freedom.

As explained in detail in Appendix B, GALI2 practically coincides with SALI in the case of chaotic orbits. This becomes evident
from Fig. 2 where we plot the absolute difference between GALI2 and SALI for the chaotic orbit of Fig. 1 as a function of time t .
The two indices practically coincide after about t ≈ 300 units, since their difference is at the limit of computer’s accuracy (10−16),
although their actual values are of order 10−5 (see Fig. 1(b)).

Let us now study the behavior of GALIk for a regular orbit of the 2D Hamiltonian (81). From (80) it follows that in the case of
a Hamiltonian system with N = 2 degrees of freedom GALI2 will always remain different from zero, while GALI3 and GALI4
should decay to zero following a power law, whose exponent depends on the number m of deviation vectors that are initially tangent
to the torus on which the orbit lies. Now, for a regular orbit of the 2D Hamiltonian (81) and a random choice of initial deviation
vectors, we expect the GALI indices to behave as

GALI2(t) ∝ constant, GALI3(t) ∝
1
t2 , GALI4(t) ∝

1
t4 . (85)

A simple qualitative way of studying the dynamics of a Hamiltonian system is by plotting the successive intersections of the
orbits with a Poincaré Surface of Section (PSS) [45]. In 2D Hamiltonians, the PSS is a two-dimensional plane and the points of a
regular orbit (which lie on a torus) fall on a smooth closed curve. This property allows us to choose initial deviation vectors tangent
to a torus in the case of system (81). In particular, we consider the regular orbit with initial conditions x = 0, y = 0, px = 0.5,
py = 0. In Fig. 3, we plot the points of intersection of this orbit with the PSS defined by x = 0 (panel (a)) and y = 0 (panel (b)).
From the morphology of the two closed curves of Fig. 3, it is easily seen that deviation vectors ê1 = (1, 0, 0, 0) and ê4 = (0, 0, 0, 1)

are tangent to the torus.
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Fig. 3. The Poincaré Surface of Section (PSS) defined by (a) x = 0 and (b) y = 0 for the regular orbit with initial conditions x = 0, y = 0, px = 0.5, py = 0 for
the Hénon–Heiles system (81).

In Fig. 4, we plot the time evolution of SALI, GALI2, GALI3 and GALI4 for the regular orbit of Fig. 3, for various choices of
initial deviation vectors. In Fig. 4(a) the initial deviation vectors are randomly chosen so that none of them is tangent to the torus.
In this case SALI and GALI2 fluctuate around non-zero values, while GALI3 and GALI4 tend to zero following the theoretically
predicted power laws; see (85). In Fig. 4(b) we present results for the indices when we have m = 1 initial deviation vector
tangent to the torus (in particular vector ê1). In this case the indices evolve as predicted by (80), i.e. SALI and GALI2 remain
practically constant, while GALI3 ∝ 1/t and GALI4 ∝ 1/t3. Finally, in Fig. 4(c) we have plotted our results using m = 2 initial
deviation vectors tangent to the torus (vectors ê1 and ê4). Again the predictions of (80) are seen to be valid since GALI3 ∝ 1/t and
GALI4 ∝ 1/t2.

The different behaviors of SALI (or GALI2) for regular and chaotic orbits have already been successfully used for discriminating
between regions of order and chaos in various dynamical systems [17,36,40–44]. For example, by integrating orbits whose initial
conditions lie on a grid, and by attributing to each grid point a color according to the value of SALI at the end of a given integration
time, one can obtain clear and informative pictures of the dynamics in the full phase space of several Hamiltonian systems of
physical significance [17,36,43].

Figs. 1(b) and 4 clearly illustrate that GALI3 and GALI4 tend to zero both for regular and for chaotic orbits, but with very different
time rates. We may use this difference to distinguish between chaotic and regular motion following a different approach than SALI
or GALI2. Let us illustrate this by considering the computation of GALI4: From (84) and (85), we expect GALI4 ∝ e−4σ1t for
chaotic orbits and GALI4 ∝ 1/t4 for regular ones. These time rates imply that, in general, the time needed for the index to become
zero is much larger for regular orbits. Thus, instead of simply registering the value of the index at the end of a given time interval
(as we do with SALI or GALI2), let us record the time, tth , needed for GALI4 to reach a very small threshold, e.g. 10−12, and color
each grid point according to the value of tth .

The outcome of this procedure for the 2D Hénon–Heiles system (81) is presented in Fig. 5. Each orbit is integrated up to t = 500
units and if the value of GALI4 at the end of the integration is larger than 10−12 the corresponding grid point is colored by the light
gray color used for tth ≥ 400. Thus we can clearly distinguish in this figure among various ‘degrees’ of chaotic behavior in regions
colored black or dark gray – corresponding to small values of tth – and regions of regular motion colored light gray, corresponding
to large values of tth . At the border between them we find points having intermediate values of tth which belong to the so-called
‘sticky’ chaotic regions. Thus, this approach yields a very detailed chart of the dynamics, where even tiny islands of stability can
be identified inside the large chaotic sea. We note that for every initial condition the same set of initial deviation vectors was used,
ensuring the same initial value of GALI4 for all orbits and justifying the dynamical interpretation of the color scale of Fig. 5.

5.2. A 3D Hamiltonian system

Let us now study the behavior of the GALIs in the case of the 3D Hamiltonian (82). Following [49,5] the initial conditions of
the orbits of this system are defined by assigning arbitrary values to the positions q1, q2, q3, as well as the so-called ‘harmonic
energies’ E1, E2, E3 related to the momenta through

pi =

√
2Ei

ωi
, i = 1, 2, 3. (86)
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Fig. 4. Time evolution of SALI (gray curves), GALI2, GALI3 and GALI4 for the regular orbit of Fig. 3 on a log – log scale for different values of the number m of
deviation vectors initially tangent to the torus: (a) m = 0, (b) m = 1 and (c) m = 2. We note that in panel (a) the curves of SALI and GALI2 are very close to each
other and thus cannot be distinguished. In every panel, dashed lines corresponding to particular power laws are also plotted.

Chaotic orbits of 3D Hamiltonian systems generally have two positive Lyapunov exponents, σ1 and σ2, while σ3 = 0. So, for
approximating the behavior of GALIs according to (43), both σ1 and σ2 are needed. In particular, (43) gives

GALI2(t) ∝ e−(σ1−σ2)t , GALI3(t) ∝ e−(2σ1−σ2)t , GALI4(t) ∝ e−(3σ1−σ2)t ,

GALI5(t) ∝ e−4σ1t , GALI6(t) ∝ e−6σ1t .
(87)

Let us consider the chaotic orbit with initial conditions q1 = q2 = q3 = 0, E1 = E2 = E3 = 0.03 for the 3D system
(82). We compute σ1, σ2 for this orbit as the long time limits of the Lyapunov exponent quantities L1(t), L2(t), applying the
technique proposed by Benettin et al. [5]. The results are presented in Fig. 6(a). The computation is carried out until L1(t) and
L2(t) stop having large fluctuations and approach some positive values (since the orbit is chaotic), which could be considered as
good approximations of their limits σ1, σ2. Actually for t ≈ 105 we have σ1 ≈ 0.03 and σ2 ≈ 0.008. Using these values as good
approximations of σ1, σ2 we see in Fig. 6(b) that the slopes of all GALIs are well reproduced by (87).

Next, we consider the case of regular orbits in our 3D Hamiltonian system. In the general case, where no initial deviation vector
is tangent to the torus where the regular orbit lies, the GALIs should behave as

GALI2(t) ∝ constant, GALI3(t) ∝ constant, GALI4(t) ∝
1
t2 ,

GALI5(t) ∝
1
t4 , GALI6(t) ∝

1
t6

(88)

according to (80). In order to verify expression (88) we shall follow a specific regular orbit of the 3D system (82) with initial
conditions q1 = q2 = q3 = 0, E1 = 0.005, E2 = 0.085, E3 = 0. The regular nature of the orbit is revealed by the slow
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Fig. 5. Regions of different values of the time tth needed for GALI4 to become less than 10−12 on the PSS defined by x = 0 of the 2D Hénon–Heiles Hamiltonian
(81).

Fig. 6. (a) The evolution of L1(t), L2(t) for the chaotic orbit with initial conditions q1 = q2 = q3 = 0, E1 = E2 = E3 = 0.03 for the 3D system (82). (b) The
evolution of GALIk with k = 2, . . . , 6 for the same orbit. The plotted lines correspond to functions proportional to e−(σ1−σ2)t , e−(2σ1−σ2)t , e−(3σ1−σ2)t , e−4σ1t

and e−6σ1t for σ1 = 0.03, σ2 = 0.008. Note that the t-axis is linear.

convergence of its L1(t) to zero, implying that σ1 = 0; see Fig. 7(a). In Fig. 7(b), we plot the values of all GALIs of this orbit with
respect to time t . From these results we see that the different behaviors of GALIs are very well approximated by formula (88).

From the results of Figs. 6 and 7, therefore, we conclude that in the case of 3D Hamiltonian systems not only GALI2, but also
GALI3 has different behavior for regular and chaotic orbits. In particular GALI3 tends exponentially to zero for chaotic orbits (even
faster than GALI2 or SALI), while it fluctuates around non-zero values for regular orbits. Hence, the natural question arises of
whether GALI3 can be used instead of SALI for the faster detection of chaotic and regular motion in 3D Hamiltonians and, by
extension, whether GALIk , with k > 3, should be preferred for systems with N > 3. The obvious computational drawback, of
course, is that the evaluation of GALIk requires that we numerically follow the evolution of more than two deviation vectors.

First of all, let us point out that the computation of SALI, applying (6), is slightly faster than that of GALI2, for which one
needs to evaluate several 2 × 2 determinants. For example, for orbits of the 3D Hamiltonian (82) the CPU time needed for the
computation of SALI for a fixed time interval t was about 97% of the CPU time needed for the computation of GALI2 for the same
time interval. Although this difference is not significant, we prefer to compute SALI instead of GALI2 and compare the efficiency
with the computation of GALI3.
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Fig. 7. (a) The evolution of L1(t) for the regular orbit with initial conditions q1 = q2 = q3 = 0, E1 = 0.005, E2 = 0.085, E3 = 0 for the 3D system (82). (b) The
evolution of GALIk with k = 2, . . . , 6 for the same orbit. The plotted lines correspond to functions proportional to 1

t2 , 1
t4 and 1

t6 .

It is obvious that the computation of GALI3 for a given time interval t needs more CPU time than that of SALI, since we follow
the evolution of three deviation vectors instead of that of two. This is particularly true for regular orbits as the index does not
become zero and its evolution has to be followed for the whole prescribed time interval. In the case of chaotic orbits, however, the
situation is different. Let us consider, for example, the chaotic orbit of Fig. 6. The usual technique for characterizing an orbit as
chaotic is checking, after some time interval, whether its SALI has become less than a very small threshold value, e.g. 10−8. For
this particular orbit, this threshold value was reached for t ≈ 760. Adopting the same threshold to characterize an orbit as chaotic,
we find that GALI3 becomes less than 10−8 after t ≈ 335, requiring only as much as 65% of the CPU time needed for SALI to
reach the same threshold!

So, using GALI3 instead of SALI, we gain considerably in CPU time for chaotic orbits, while we lose for regular orbits. Thus,
the efficiency of using GALI3 for discriminating between chaos and order in a 3D system depends on the percentage of phase space
occupied by chaotic orbits (if all orbits are regular, GALI3 requires more CPU time than SALI). More crucially, however, it depends
on the choice of the final time, up to which each orbit is integrated. As an example, let us integrate, up to t = 1000 time units, all
orbits whose initial conditions lie on a dense grid in the subspace q3 = p3 = 0, p2 ≥ 0 of a four-dimensional PSS, with q1 = 0,
of the 3D system (82), attributing to each grid point a color according to the value of GALI3 at the end of the integration. If GALI3
for an orbit becomes less than 10−8 for t < 1000 the evolution of the orbit is stopped, its GALI3 value is registered and the orbit is
characterized as chaotic. The outcome of this experiment is presented in Fig. 8.

We find that 77% of the orbits of Fig. 8 are characterized as chaotic, having GALI3 < 10−8. In order to have the same percentage
of orbits identified as chaotic using SALI (i.e. having SALI < 10−8) the same experiment has to be carried out for t = 2000 units,
requiring 53% more CPU time. Due to the high percentage of chaotic orbits, in this case, even when the SALI is computed for
t = 1000 the corresponding CPU time is 12% higher than the one needed for the computation of Fig. 8, while only 55% of the
orbits are identified as chaotic. Thus it becomes evident that a carefully designed application of GALI3 – or GALIk for that matter
– can significantly diminish the computational time needed for a reliable discrimination between regions of order and chaos in
Hamiltonian systems with N > 2 degrees of freedom.

5.3. A multi-dimensional Hamiltonian system

Let us finally turn to a much higher dimensional Hamiltonian system having 15 degrees of freedom, i.e. the one shown in (83).
With fixed boundary conditions

q0(t) = q16(t) = 0, ∀t, (89)

it is known that there exists, for all energies, H15 = E , a simple periodic orbit, satisfying [52,39]

q2i (t) = 0, q2i−1(t) = −q2i+1(t) = q(t), i = 1, 2, . . . , 7, (90)

where q(t) = q(t + T ) obeys a simple nonlinear equation admitting Jacobi elliptic function solutions. For the parameter values
H15 = 26.68777 and β = 1.04 used in an earlier study [39], we know that this orbit is unstable and has a sizable chaotic region
around it. As initial conditions for (90) we take

q(0) = 1.322 and pi (0) = 0, i = 1, 2, . . . , 15. (91)
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Fig. 8. Regions of different values of the GALI3 on the subspace q3 = p3 = 0, p2 ≥ 0 of the four-dimensional PSS q1 = 0 of the 3D system (82) at t = 1000.

Fig. 9. (a) The evolution of L1(t), L2(t), L3(t) and L4(t) for a chaotic orbit of the 15D system (83). (b) The evolution of GALI2, GALI3 and GALI4 for the same
orbit. The plotted lines correspond to functions proportional to e−(σ1−σ2)t , e−(2σ1−σ2−σ3)t and e−(3σ1−σ2−σ3−σ4)t , for σ1 = 0.132, σ2 = 0.117, σ3 = 0.104,
σ4 = 0.093. Note that the t-axis is linear.

First, we consider a chaotic orbit which is located close to this periodic solution, by taking as initial conditions q1(0) = q(0),
q3(0) = q7(0) = q11(0) = −q(0) + 10−7, q5(0) = q9(0) = q15(0) = q(0) − 10−7, q2i (0) = 0 for i = 1, 2, . . . , 7 and pi (0) = 0
for i = 1, 2, . . . , 14, p15(0) = 0.00323. The chaotic nature of this orbit is revealed by the fact that its maximal LCE is positive
(see Fig. 9(a)). In fact, from the results of Fig. 9(a) we deduce reliable estimates of the system’s four largest Lyapunov exponents:
σ1 ≈ 0.132, σ2 ≈ 0.117, σ3 ≈ 0.104 and σ4 ≈ 0.093. Thus, we have a case where several LCEs have positive values, the largest
two of them being very close to each other. The behavior of the GALIs is again quite accurately approximated by the theoretically
predicted exponential laws (43). This becomes evident from the results presented in Fig. 9(b), where we plot the time evolution of
GALI2, GALI3 and GALI4 as well as the exponential laws that theoretically describe the evolution of these indices. In this case,
GALI2 does decay to zero relatively slowly since σ1 and σ2 have similar values and hence, using GALI3, GALI4 or a GALI of
higher order, one can determine the chaotic nature of the orbit much more quickly.

It is worth mentioning that (43) describes much more accurately the evolution of GALIk when the orbit that we wish to study
is very close to the unstable periodic solution (90) itself. This is due to the fact that in that case, the LCEs are directly related to
the eigenvalues of the monodromy matrix associated with the variational equations of this unstable periodic orbit; see Eq. (25).
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Fig. 10. (a) The evolution of L1(t), L2(t), L3(t) and L4(t) for an orbit which is very close to the unstable periodic orbit (91) of the 15D system (83). (b)
The evolution of GALI2, GALI3 and GALI4 for the same orbit. The plotted lines correspond to functions proportional to e−(σ1−σ2)t , e−(2σ1−σ2−σ3)t and
e−(3σ1−σ2−σ3−σ4)t , for σ1 = 0.3885, σ2 = 0.3883, σ3 = 0, σ4 = 0. Note that the t-axis is linear.

In fact, for our choice of parameters, this matrix has two equal pairs of real eigenvalues with magnitude greater than 1, while all
other eigenvalues lie on the unit circle in the complex plane. As a consequence, the orbit has two nearly identical positive Lyapunov
exponents (as well as their two negative counterparts), while all other exponents are zero. This is shown in Fig. 10(a), where we plot
the evolution of the L i (t) for i = 1, 2, 3, 4, whose limits for t → ∞ are the four largest Lyapunov exponents. From these results
we deduce σ1 ≈ 0.3885, σ2 ≈ 0.3883, while the decreases of L3(t) and L4(t) to zero indicate that σ3 = σ4 = 0. In Fig. 10(b) we
now observe that GALI2 remains practically constant for this particular time interval (actually it decreases to zero extremely slowly
following the exponential law e−(σ1−σ2)t = e−0.0002t ). On the other hand, GALI3 and GALI4 decay exponentially to zero following
the laws GALI3 ∝ e−(2σ1−σ2−σ3)t , GALI3 ∝ e−(3σ1−σ2−σ3−σ4)t , given by Eq. (43).

6. Discussion and conclusions

In this paper we have introduced and applied the Generalized Alignment Indices of order k (GALIk) as a tool for studying local
and global dynamics in conservative dynamical systems, such as Hamiltonian systems of N degrees of freedom, or 2N -dimensional
symplectic maps. We have shown that these indices can be successfully employed not only to distinguish individual orbits as chaotic
or regular, but also to efficiently chart large domains of phase space, characterizing the dynamics in the various regions by different
behaviors of the indices ranging from regular (GALIks are constant or decay by well-defined power laws) to chaotic (GALIks
exponentially go to zero).

A different approach than simply calculating the maximal Lyapunov exponent is computing the so-called Smaller Alignment
Index (SALI), following the evolution of two initially different deviation vectors. This approach has been used by several authors and
has proved quite successful, as it can determine the nature of the dynamics more rapidly, reliably and efficiently than the maximal
LCE. In the present paper, motivated by the observation that the SALI is in fact proportional to the ‘area’ of a parallelogram, having
as edges the two normalized deviation vectors, we have generalized SALI by defining a quantity called GALIk , representing the
‘volume’ of a parallelepiped having as edges k > 2 initially linearly independent unit deviation vectors. In practice, GALIk is
computed as the ‘norm’ of the ‘exterior’ or wedge product of the k normalized deviation vectors.

For the numerical evaluation of GALIk , we need to compute the reference orbit that we are interested in from the fully nonlinear
equations of the system, as well as follow the time evolution of k deviation vectors, solving the (linear) variational equations about
the orbit. How many such vectors should we take? Since the phase space of the dynamical system is 2N -dimensional, k should
be less than or equal to 2N ; otherwise GALIk will be equal to zero already from the start. However, even though we may choose
our deviation vectors initially linearly independent, they may become dependent as time evolves, in which case the phase space
‘volume’ represented by GALIk will vanish! This is precisely what happens for all k > 2 if our reference orbit is chaotic, and also
if it is regular and k > N , but at very different time rates.

In particular, we showed analytically and verified numerically for a number of examples of Hamiltonian systems that for chaotic
orbits GALIk tends exponentially to zero following a rate which depends on the values of several Lyapunov exponents (see Eq.
(43)). On the other hand, in the case of regular orbits, GALIk with 2 ≤ k ≤ N fluctuates around non-zero values, while, for
N < k ≤ 2N , it tends to zero following a power law (see Eq. (80)). The exponent of the power law depends on the values of k and
N , as well as on the number m of deviation vectors that may have been chosen initially tangent to the torus on which the orbit lies.



Ch. Skokos et al. / Physica D 231 (2007) 30–54 51

Clearly, these different behaviors of the GALIk can be exploited for the rapid and accurate determination of the chaotic versus
regular nature of a given orbit, or of an ensemble of orbits. Varying the number of deviation vectors (and bringing more LCEs into
play), we can, in fact, achieve high rates of identification of chaotic regions, in a computationally advantageous way. Secondly,
regular motion can be identified by the index being nearly constant for small k, while, when k exceeds the dimension of the orbits’
subspace, GALIk decays by well-defined power laws. This may help us identify, for example, cases where the motion occurs on
cantori of dimension d < N (see e.g. [45]) and the orbits become ‘sticky’ on island chains, before turning truly chaotic and
exponential decay takes over.

We have also studied for specific Hamiltonians with N > 2 the computational efficiency of the GALIk . One might suspect, of
course, that the best choice would be GALIN since this is the index that exhibits the most different behavior for regular and chaotic
orbits. On the other hand, it is clear that following a great number of deviation vectors requires considerably more computation
time. It turns out, however, that, if chaos occupies a ‘large’ portion of phase space, a well-tailored application of GALIk , with
2 < k ≤ N , can significantly diminish the CPU time required for the detailed ‘charting’ of phase space, compared with that for
SALI (k = 2), as we demonstrated for specific examples in Section 5.2 (see Fig. 8).

Although the results presented in this paper were obtained for N -degree-of-freedom Hamiltonian systems, it is easy to see
that they also apply to 2N -dimensional symplectic maps. So, Eqs. (43) and (80) which describe the behavior of GALIk , with
2 ≤ k ≤ 2N , for chaotic and regular orbits respectively, are expected to hold in that case also. One remark is in order, however: In
the case of N = 1, i.e. for 2D maps, the first condition of Eq. (80) cannot be fulfilled. Thus, for regular orbits of 2D maps, any two
initially independent deviation vectors will become aligned in the direction tangent to the corresponding invariant curve and GALI2
will tend to zero following a power law of the form GALI2 ∝ 1/t2. This behavior is already known in the literature [15].

Acknowledgements

This work was partially supported by the European Social Fund (ESF), Operational Program for Educational and Vocational
Training II (EPEAEK II) and particularly the Programs HERAKLEITOS, providing a Ph. D. scholarship for the third author
(C. A.) and the Program PYTHAGORAS II, partially supporting the first author (Ch. S.). Ch. S. was also supported by the Marie
Curie Intra-European Fellowship No MEIF–CT–2006–025678. The second author (T. B.) wishes to express his gratitude to the
beautiful Centro Internacional de Ciencias of the Universidad Autonoma de Mexico for its excellent hospitality during his visit in
January–February 2006, when some of this work was completed. In particular, T. B. wants to thank the main researchers of this
Center, Dr. Christof Jung and Thomas Seligman, for numerous conversations on the stability of multi-dimensional Hamiltonian
systems. Finally, we would like to thank the referees for very useful comments which helped us improve the clarity of the paper.

Appendix A. Wedge product

Following an introduction to the theory of wedge products as presented in textbooks such as [53], let us consider an M-
dimensional vector space V over the field of real numbers R. The exterior algebra of V is denoted by Λ(V ) and its multiplication,
known as the wedge product or the exterior product, is written as ∧. The wedge product is associative:

(Eu ∧ Ev) ∧ Ew = Eu ∧ (Ev ∧ Ew) (A.1)

for Eu, Ev, Ew ∈ V and bilinear

(c1 Eu + c2Ev) ∧ Ew = c1(Eu ∧ Ew) + c2(Ev ∧ Ew),

Ew ∧ (c1 Eu + c2Ev) = c1( Ew ∧ Eu) + c2( Ew ∧ Ev) (A.2)

for Eu, Ev, Ew ∈ V and c1, c2 ∈ R. The wedge product is also alternating on V :

Eu ∧ Eu = E0 (A.3)

for all vectors Eu ∈ V . Thus we have that

Eu ∧ Ev = −Ev ∧ Eu (A.4)

for all vectors Eu, Ev ∈ V and

Eu1 ∧ Eu2 ∧ · · · ∧ Euk = E0 (A.5)

whenever Eu1, Eu2, . . . , Euk ∈ V are linearly dependent.
Elements of the form Eu1 ∧ Eu2 ∧ · · · ∧ Euk with Eu1, Eu2, . . . , Euk ∈ V are called k-vectors. The subspace of Λ(V ) generated by all

k-vectors is called the k-th exterior power of V and denoted by Λk(V ). The exterior algebra Λ(V ) can be written as the direct sum
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of each of the k-th powers of V :

Λ(V ) =

M⊕
k=0

Λk(V ) = Λ0(V ) ⊕ Λ1(V ) ⊕ Λ1(V ) ⊕ · · · ⊕ ΛM (V ) (A.6)

where Λ0(V ) = R and Λ1(V ) = V .
Let {ê1, ê2, . . . , êM } be an orthonormal basis of V , i.e. êi , i = 1, 2, . . . , M , are linearly independent vectors of unit magnitude

and

êi · ê j = δi j (A.7)

where (·) denotes the inner product in V and

δi j =

{
1 for i = j
0 for i 6= j. (A.8)

It can be easily seen that the set

{êi1 ∧ êi2 ∧ · · · ∧ êik | 1 ≤ i1 < i2 < · · · < ik ≤ M} (A.9)

is a basis of Λk(V ) since any wedge product of the form Eu1 ∧ Eu2 ∧ · · · ∧ Euk , can be written as a linear combination of the k-vectors
of Eq. (A.9). This is true because every vector Eui , i = 1, 2, . . . , k can be written as a linear combination of the basis vectors êi ,
i = 1, 2, . . . , M , and using the bilinearity of the wedge product this can be expanded to a linear combination of wedge products of
those basis vectors. Any wedge product in which the same basis vector appears more than once is zero, while any wedge product
in which the basis vectors do not appear in the proper order can be reordered, changing the sign whenever two basis vectors change
places. The dimension of Λk(V ) is equal to the binomial coefficient

dim Λk(V ) =

(
M
k

)
=

M !

k!(M − k)!
(A.10)

and thus the dimension of Λ(V ) is equal to the sum of the binomial coefficients

dim Λ(V ) =

M∑
k=0

(
M
k

)
= 2M . (A.11)

The coefficients of a k-vector Eu1 ∧ Eu2 ∧ · · · ∧ Euk are the minors of the matrix that describes the vectors Eui , i = 1, 2, . . . , k, in
terms of the basis êi , i = 1, 2, . . . , M . Let us write these relations in matrix form:

Eu1
Eu2
...

Euk

 =


u11 u12 · · · u1M
u21 u22 · · · u2M
...

...
...

uk1 uk2 · · · uk M

 ·


ê1
ê2
...

êM

 = C ·


ê1
ê2
...

êM

 (A.12)

where C is the matrix of the coefficients of vectors Eui , i = 1, 2, . . . , k, with respect to the orthonormal basis êi , i = 1, 2, . . . , M ,
and ui j , i = 1, 2, . . . , k, j = 1, 2, . . . , M , are real numbers. Then the wedge product Eu1 ∧ Eu2 ∧ · · · ∧ Euk is defined by

Eu1 ∧ Eu2 ∧ · · · ∧ Euk =

∑
1≤i1<i2<···<ik≤M

∣∣∣∣∣∣∣∣∣
u1i1 u1i2 · · · u1ik

u2i1 u2i2 · · · u2ik
...

...
...

uki1 uki2 · · · ukik

∣∣∣∣∣∣∣∣∣ êi1 ∧ êi2 ∧ · · · ∧ êik (A.13)

where the sum is performed over all possible combinations of k indices out of the M total indices. So the coefficient of a particular
k-vector êi1 ∧ êi2 ∧ · · · ∧ êik is the determinant of the k × k submatrix of the k × M matrix of coefficients appearing in Eq. (A.12)
formed by its i1, i2, . . ., ik columns.

Appendix B. The relation between GALI2 and SALI

Proposition 1. We consider a 2N-dimensional vector space over the field of real numbers R, which has the usual Euclidean norm
and is spanned by the orthonormal basis {ê1, ê2, . . . , ê2N }. We also consider two unit vectors ŵ1, ŵ2 in this space so that

ŵ1 =

2N∑
i=1

w1i êi , ŵ2 =

2N∑
i=1

w2i êi , (B.1)
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and
2N∑
i=1

w2
1i = 1,

2N∑
i=1

w2
2i = 1. (B.2)

Let us now define the 2-vector ŵ1 ∧ ŵ2 from Eq. (A.13) and its norm from Eq. (18). Under these assumptions the following holds:

‖ŵ1 ∧ ŵ2‖ =
‖ŵ1 − ŵ2‖ · ‖ŵ1 + ŵ2‖

2
. (B.3)

Proof. Expanding the right hand side of Eq. (B.3) we have

A =

(
‖ŵ1 + ŵ2‖ · ‖ŵ1 − ŵ2‖

2

)2

=

2N∑
i=1

(w1i − w2i )
2
·

2N∑
i=1

(w1i + w2i )
2

4

=
1
4

·

[(
2N∑
i=1

w2
1i +

2N∑
i=1

w2
2i − 2

2N∑
i=1

w1iw2i

)
·

(
2N∑
i=1

w2
1i +

2N∑
i=1

w2
2i + 2

2N∑
i=1

w1iw2i

)]

=

(
1 −

2N∑
i=1

w1iw2i

)
·

(
1 +

2N∑
i=1

w1iw2i

)
= 1 −

(
2N∑
i=1

w1iw2i

)2

⇒ A = 1 −

(
2N∑
i=1

w2
1iw

2
2i + 2

∑
i< j

w1iw2iw1 jw2 j

)
, (B.4)

where we made use of (B.2). On the other hand, using Eq. (18) we get for the left hand side of Eq. (B.3)

B = ‖ŵ1 ∧ ŵ2‖
2

=

∑
i< j

∣∣∣∣w1i w1 j
w2i w2 j

∣∣∣∣2 =

∑
i< j

(w1iw2 j − w1 jw2i )
2

⇒ B =

∑
i< j

w2
1iw

2
2 j +

∑
i< j

w2
1 jw

2
2i − 2

∑
i< j

w1iw2iw1 jw2 j . (B.5)

The first two sums of Eq. (B.5) contain all the possible products of the coordinates of the two vectors except the ones corresponding
to equal indices, i = j . So the quantity B can be written as follows:

B =

∑
i 6= j

w2
1iw

2
2 j − 2

∑
i< j

w1iw2iw1 jw2 j

=

∑
i 6= j

w2
1iw

2
2 j +

2N∑
i=1

w2
1iw

2
2i −

(
2N∑
i=1

w2
1iw

2
2i + 2

∑
i< j

w1iw2iw1 jw2 j

)
. (B.6)

Now, the first two sums contain all the possible products between the coordinates of the two vectors and so B takes the form

B =

2N∑
i=1

2N∑
j=1

w2
1iw

2
2 j −

(
2N∑
i=1

w2
1iw

2
2i + 2

∑
i< j

w1iw2iw1 jw2 j

)

=

2N∑
i=1

w2
1i ·

2N∑
i=1

w2
2i −

(
2N∑
i=1

w2
1iw

2
2i + 2

∑
i< j

w1iw2iw1 jw2 j

)

⇒ B = 1 −

(
2N∑
i=1

w2
1iw

2
2i + 2

∑
i< j

w1iw2iw1 jw2 j

)
, (B.7)

where we used again (B.2). Comparing Eqs. (B.4) and (B.7) we see that the two sides of Eq. (B.3) are equal and so the proof of
Proposition 1 is complete. �

Using Eq. (B.3) as well as the definitions of SALI (6) and GALI2 (19) we conclude that the precise relation between the two
indices is

GALI2 = SALI ·
max

{∥∥ŵ1 + ŵ2
∥∥ ,
∥∥ŵ1 − ŵ2

∥∥}
2

. (B.8)

So, the two indices are proportional to each other:

GALI2 ∝ SALI, (B.9)
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since the quantity m = max
{∥∥ŵ1 + ŵ2

∥∥ ,
∥∥ŵ1 − ŵ2

∥∥} lies in the interval m ∈ [
√

2, 2]. In particular, in the case of chaotic orbits
m → 2 as SALI → 0 and eventually GALI2 also vanishes, while in the case of regular motion m fluctuates around non-zero values
in the above interval [

√
2, 2).

From the above discussion we conclude that SALI is essentially equivalent to GALI2. In practice, however, since the computation
of GALI2 according to Eq. (18) for k = 2 requires the evaluation of several 2 × 2 determinants, it is more convenient to compute
SALI in its place, by performing the simpler computation of Eq. (6).
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